● 测试总结与回顾
本次我们选取的测试项目,尽力兼顾GPU的全局性能和不同功能单元性能,或者说我们侧重于GPU在某项应用中的实际表现。所以我们没有选择游戏测试这种家喻户晓的3D图形负载,但是这并不说明我们忽视游戏测试的重要性。
回顾AMD在统一渲染时代做出的努力,我们能够感觉到从R600到R800时代,AMD在试图通过不断堆砌SIMD结构的ALU运算器以提升性能,这是一个简单而粗暴的真理。
同时还有一些细节是用户所没有注意到的,比如我们所熟知的RV770架构在程能力和并性能力方面做出很多优化,这些优化让RV770的性能表现相对于R600可以用脱胎换骨来形容。到了R800时代,AMD为了妥协工艺与架构之间的关系,没有做出太显著的架构改善,但是巨大的处理资源还是让用户真切地感受到了性能提升。

AMD在2005年发现了芯片规模的迅速增长对于功耗和发热的压力问题,并逐步提高重视程度着手解决。在GPU产品模块化设计的时代,衡量不同架构和工艺之间的关系已经成为一个重要并难以解决的问题。在这一点上,众多的评测数据特别是每瓦特性能这个指标,已经证明了AMD近几年间的路线。
从另一个角度讲,AMD和NVIDIA在设计思路方面的差异是很明显的。NVIDIA一直用优秀的架构设计,来回避制造工艺带来的种种问题,而AMD虽然在架构上显得落后,但是芯片制程方面总能够领先对手一段时间或者说一段距离。因此AMD可以倚重芯片工艺的进步来考虑未来的发展,NVIDIA则更多地想凭借架构特别是TLP(线程并行度)思路来兼顾图形与计算两个方面。
面对现在图形编程特别是游戏编程在DirectX 9时代的深刻烙印,AMD的想法是正确的,它能够利用架构特性,用最小的晶体管开销换取最大的性能;但是面对未来的图形编程环境,更为灵活地处理繁杂的1D或者非全4D指令才应该是GPU应该走的路,NVIDIA的想法和做法也完全准确,不过NVIDIA为了自己想去开拓的通用计算市场,不得不搭载很多控制和缓存逻辑电路,实现芯片运算器规模的成倍增长的代价要大很多。
就像文中所说,NV更加趋紧于使用基于硬件调度器的Superscalar方式来开发ILP,而AMD更加趋紧于基于软件编译器调度的VLIW方式来开发ILP。总体来说,AMD使用了更大规模的ALU运算器单元,NVIDIA则更注重如何利用有限的ALU运算器资源。AMD将更多的晶体管消耗在大量的SIMD Core单元上,NVIDIA则将更多的晶体管消耗在仲裁机制、丰富的共享缓存资源和寄存器资源以及充足的发射端方面。
让我们把话题转向最新发布的Fermi架构GPU。仅从GPU架构方面分析,我们看到了在以前GPU中根本不可能见到的各种设计,这无疑是一种技术进步的体现。最终导致Fermi放弃浮点吞吐完全转向执行效率,可以算是让NVIDIA近几年设计思路达到完美的体现。但是对于Fermi架构在图形方面的表现,我们还是认为其性能功耗比有待提高。
马上我们就能够看到大量的DirectX 11游戏走入我们的视线,在DirectX 11接口中,Tessellation作为核心技术总是让人大开眼界。当然我们也知道,Fermi架构的GTX480产品拥有15个Tessellation单元的庞大规模,所以曲面细分综合性能远超AMD相关DirectX产品,不过对于Tessellation单元未来的发展,我也不免感到迷茫。
Direct X作为微软主推,业界倾力支持的图形API,一路走来成功统一了无数功能独立的单元,让GPU宏观上看起来更加,可编程性更强。但是曲面细分性能或者说业界对曲面细分的依赖,再次造就出独立的Tessellation单元。当然虽然它不太符合通用处理单元的设计方向,但是如果计算晶体管的投入与性能回报,独立的硬件Tessellation单元是目前最好的选择。
回顾R600到R800的发展历程,我们不好得出什么太直观的结论,毕竟在两家图形芯片厂商激烈竞争的时候,我们不应该带有倾向性或者融入个人情感去讨论这些问题。每当我遇到这种难题时,我还是愿意回到市场,让市场去检验一代或者几代芯片组的发展历程,让用户完成对NVIDIA和AMD两家图形芯片厂商最终的评定。
要说这篇测试的遗憾,就是时间和精力过于有限,导致无法运行更多项目,特别是底层性能的分析;同时对于每项测试数据,也只能寥寥几笔带过,没有做更为深入的分析。希望我们故事化的架构分析能够获得读者的喜欢,也希望我们的评测数据能为用户在分析和理解AMD统一渲染架构演化的过程中,起到一些帮助。
在文章最后,我需要感谢迪兰恒进这家老牌AIB厂商,还有艾维硕科技媒体公关经理,朱亮先生。这本是一篇技术分析文章,而我为了让读者看得更加明白,决定临时加入测试部分。本次测试所用的部分显卡如HD2900XT、HD2600XT,在市场上已经绝迹。在他无私帮助下,迪兰恒进储备的经典显卡来到中关村在线显卡频道,这些古董级别的收藏显卡,最终完成了对所有项目的测试。
- 相关阅读:
- ·AMD下代R400系列GPU架构曝光:效率大增
//vga.zol.com.cn/548/5480371.html - ·AMD新一代Zen架构或将分为两种纳米工艺
//vga.zol.com.cn/546/5465091.html - ·野心乍现:三星未来将使用自主架构GPU
//vga.zol.com.cn/544/5447341.html - ·AMD命拉加·库德里任SVP GPU/CPU未分家
//vga.zol.com.cn/540/5405929.html - ·AMD要东山再起 重整高性能放弃模块架构
//vga.zol.com.cn/451/4514054.html
- 第1页:AMD统一渲染GPU架构 历程回顾与评测
- 第2页:R520和R580对NVIDIA的影响
- 第3页:R600与G80的不均衡对抗
- 第4页:RV670开始改进 绝境求生
- 第5页:GT200体现NVIDIA变化方向
- 第6页:RV770的策略与成功
- 第7页:AMD的赌注与HD4850的改变
- 第8页:RV870的设计思路和诞生背景
- 第9页:RV870芯片概况与策略
- 第10页:Fermi架构的困惑
- 第11页:R600芯片设计之初遇到的问题
- 第12页:RV770和RV870架构追求不断改进
- 第13页:Fermi未来的性能亮点与优势
- 第14页:回顾统一渲染架构,探寻SIMD极限
- 第15页:基本信息分析——Radeon HD2900 XT
- 第16页:基本信息分析——Radeon HD3870
- 第17页:基本信息分析——Radeon HD4890
- 第18页:基本信息分析——Radeon HD5870
- 第19页:性能测试的硬件、软件平台状况
- 第20页:DX9理论性能测试:3DMark 06
- 第21页:DX10理论性能测试:3Dmark Vantage
- 第22页:GPGPU着色器性能-单精度Shader
- 第23页:GPGPU着色器性能-双精度Shader
- 第24页:3Dmark Vantage 贴图填充率测试
- 第25页:3Dmark Vantage 视差闭塞映射
- 第26页:3Dmark Vantage GPU粒子模拟
- 第27页:3Dmark 06 Shader Particles 3.0
- 第28页:Furmark Open GL 性能测试
- 第29页:Lightsmark 光照渲染测试
- 第30页:DirectX 10 SDK Cube Map GS
- 第31页:DirectX 10 SDK N Body Gravity
- 第32页:测试总结与回顾


就为那一抹红 iGame GTX 1660 Ultra图赏
A卡真旗舰 蓝宝石RX 5700 XT 超白金图赏
蓝色时代LP410B移动电源视频介绍
华硕P8Z77-V DELUXE新功能解析