GPU通用运算什么时候出现的?
在SIGGRAPH 2003大会上,许多业界泰斗级人物发表了关于利用GPU进行各种运算的设想和实验模型。SIGGRAPH会议还特地安排了时间进行GPGPU的研讨交流。与此同时,DirectX 9 Shader Model 3.0时代,新的Shader Model在指令槽、流控制方面的显著增强使得对应GPU的可编程性能得到了大大的提升。GPGPU的研究由此进入快车道。
Shader单元运算性能不断增长
随着GPU Shader单元计算能力的不断增长,一场GPU革命的时机也成熟了。GPU已经从由若干专用的固定功能单元(Fixed Function Unit)组成的专用并行处理器,进化为了以通用计算资源为主,固定功能单元为辅的架构,这一架构的出现奠定了GPGPU的发展基础。
2004年9月份,剑桥大学的BionicFx课题组宣布在NVIDIA的最新GPU产品中实现了专业的实时音频处理功能,并且准备进行商业化的运作,对其产品进行销售,给音乐创作者带来实惠。现在,该解决方案命名为“音视频互换技术”(Audio Video EXchange,AVEX)。BionicFx的工作流程是:待处理的音频数据—〉转换成图形数据—〉GPU处理—〉处理后的图形数据—〉转换成所需音频数据。这说明AVEX实际上是作为虚拟硬件层在与GPU通讯,但GPU不仅是图形处理器,而是变成了一颗独立的数字信号处理器(DSP)。
GPU通用计算正在飞速发展
因为具备强大的并行处理能力和极高的存储器带宽,GPU如果被抽象成一个“流处理器”(Stream Processor),来用于诸如科学运算、数据分析、线性代数、流体模拟等需要大量重复的数据集运算和密集的内存存取的应用程序,那么我们就能获得比CPU强悍得多的计算能力。
GPU应用在各种领域,提供了不可思议的加速比
巨大的运算能力让人们对GPU充满期待,似乎在一夜之间,GPU用于通用计算(General Purpose GPU)及其相关方面的问题成为一个十分热门的话题。视频编码应用,比CPU快18倍;期货风险控制系统,整个系统性价比提升9倍;医疗行业应用,CT立体化且提速20倍;地理信息系统应用,速度提升可达50倍;生命科学研究,等待时间缩短12倍;矩阵计算以及仿真能力,比CPU快17倍……一个以GPU为中心的高效运算平台正在向我们走来。
推荐经销商