● 奋起直追的并行度
作为GCN架构的改良版本,Hawaii在诸多方面进行了修改,并行度的提升便是其中之一。宏观并行结构本身并不会给GPU带来通常意义上的直接可量化图形性能提升,但宏观并行度提升的副产品,也就是几何单元以及光栅化单元的增加,以及宏观并行度提升所带来的线程管理以及任务执行效率的增长,都将会给GPU的性能增长带来助益。
宏观并行度提升的Hawaii架构
Hawaii拥有4 Shader Engines的宏观并行结构,单位周期内可以并行处理4个多边形,几何处理能力以及坐标变换等光栅化处理能力均为前代Tahiti架构的两倍。
Hawaii的另一大前端改进来自ACE单元,这与整个体系的并行度及并行执行能力息息相关。ACE全称Asynchronous Compute Engine,译为异步计算引擎。作为AMD GPU最前端的组成部分,它的实际作用其实与几何以及光栅化等图形过程并没有直接的联系。ACE位于整个GPU的最前端管理任务队列,它会将线程块规整的分发给后面的ALU团簇。ACE是所有GPU任务的起点,它的存在和表现直接关系到了GPU进行图形及通用计算任务是的效率表现。在Hawaii架构当中,ACE的总量较之Tahiti提升了4倍,达到了8组。
除此之外,Hawaii的ACE单元在功能性层面也有提升。新的ACE单元支持L2 cache及GDS的直接访问及管理工作,可同时管理总计64个任务队列(8x8 queues),支持独立并行的任务运作及调度,可以实现图形命令及任务的并行处理,这不仅有助于整个架构实现更为快速的上下文切换功能,同时进一步改善任务密度和单元复用情况。
Hawaii内部划分明确的子处理单元代表了AMD在宏观并行度层面对竞争对手的追赶,从结构角度而言,Shader Engine与GPC的差异已经不大。尽管多shader engines构成的ALU集群仍旧可以被视为一个整体,同时也没有迹象表明AMD放弃了抢占式多线程等前端任务管理机制,但Hawaii架构的宏观并行度较之Cayman/Tahiti架构仍旧有了明显的提升。这是AMD GPU架构演进过程中里程碑式的一步,将会对未来的AMD图形架构乃至整个HSA通用计算架构的发展产生至关重要的影响。
推荐经销商