● GPU并行计算已成未来趋势
无数游戏玩家疯狂的购买力已经使得GPU这种芯片的价格下跌到只要花一百美元就能买到一颗性能级GPU产品,那为什么不大面积部署这种产品,来降低超级计算机的价格呢?从2006年的第一款Fire Stream产品开始,业内人士已经发现了GPU在处理大并行度程序时所表现出的超常性能。
在传统的GPU种,Shader单元从出现(2001年DirectX 8发布标志着Shader单元出现)到运算能力迅速提升(2007年Geforce 8800GTX发布,通用计算影响力显著扩大)经过了很长时间。在这段时间里,显卡对于高端大规模并行运算是毫无价值的,即使有少量业界先行者开始了思考和研究,也无法形成对整个产业的影响力。
GPU开始应用于超级计算机
这个阶段在超级计算机与集群中,往往要拆除“多余的”显卡以节能功耗,而自从AMD公司的Stream架构NVIDIA公司的CUDA架构奠定了GPU通用计算地位之后,现在的设计开始逐渐采用大量GPU来获得更加廉价和绿色的计算能力。CUDA的强大性能引发了一场通用计算革命,这场革命将极大地改变计算机的面貌。
但是随着GPU的可编程性不断增强,GPU的应用能力已经远远超出了图形渲染任务,利用GPU完成通用计算的研究逐渐活跃起来,将GPU用于图形渲染以外领域的计算成为GPGPU(General Purpose computing on graphics processing units,基于GPU的通用计算)。
而与此同时CPU则遇到了一些障碍,CPU为了追求通用性,将其中大部分晶体管主要用于构建控制电路(比如分支预测等)和Cache,只有少部分的晶体管来完成实际的运算工作。在CPU上增加并行度已经变得越来越困难,虽然HTT超线程技术在Intel的推广下得以应用在自家的高端CPU中,但是目前单颗CPU所拥有的最大线程数还只是12个。
我们已经习惯了计算机核心性能的不断提升,而且似乎认为这是理所当然的事。因为传统芯片的性能提升可以依赖芯片制造工艺的进步。这种进步我们通常用摩尔定律来概括。1965年Intel的创始人戈登•摩尔(Gordon Moore)通过长期的对比研究后发现:CPU中的部件(我们现在所说的晶体管)在不断增加,其价格也在不断下降。“随着单位成本的降低以及单个集成电路集成的晶体管数量的增加;到1975年,从经济学来分析,单个集成电路应该集成65000个晶体管。”Intel此后几年的发展都被摩尔提前算在了纸上,使人们大为惊奇,“摩尔定律”也名声大振。为了让人们更直观地了解摩尔定律,摩尔及其同事总结出一句极为精练的公式 “集成电路所包含的晶体管每18个月就会翻一番”。
将摩尔定律简单应用在芯片集成度的增长方面,我们可以得出这在今天意味着:每年单芯片中可以大约多放置50%的元件。这种技术表面上为我们的芯片发展铺平了道路,虽然大多数趋势是向好的。比如说20年前芯片设计者刚刚开始把浮点运算单元FPU集成到CPU核心,但是20年后这个单元制占用1平方毫米不到的空间,而且同一个核心上可以放置上百个浮点运算单元。
但是这种性能提升并不是无止境的,而且这些技术发展最重要的后果是它们之间的区别。当某一指标变动速度和其他指标变动速率不同时,我们就需要重新考虑在芯片和系统设计背后的假设。换而言之目前CPU已经遇到了非常严重的计算与通信障碍、存储器延迟与带宽障碍和发热与功耗。而GPU在这3个方面表现显然要比CPU更为出色,在后文我们将详细分析GPU在这诸多方面的特性。
- 第1页:全文导读与内容简介
- 第2页:前言:通过GPU见证行业变革
- 第3页:第一章:GPU工作原理与并行计算
- 第4页:21世纪视觉需求与GPU变化
- 第5页:从山峰渲染了解GPU图形流水线
- 第6页:CPU与GPU的设计方向决定运算能力
- 第7页:GPU并行编程为何加速发展
- 第8页:GPU并行计算已成未来趋势
- 第9页:初识高性能并行计算
- 第10页:高性能并行计算发展历程
- 第11页:高性能并行计算单元分类
- 第12页:初识基于GPU系统的云计算
- 第13页:第二章:GPU结构与ATI产品发展
- 第14页:统一着色器架构释放GPU运算能力
- 第15页:传统GPU发展与着色器管线
- 第16页:传统SIMD结构流处理器指令细节
- 第17页:MIMD结构流处理器指令细节
- 第18页:R600时代对SIMD架构补充与优化
- 第19页:两种结构流处理器优劣对比
- 第20页:R300以来的芯片架构及其影响
- 第21页:ATI第一代统一渲染架构Xenos
- 第22页:统一渲染GPU R600临危受命
- 第23页:AMD对GPU架构的不断改进和优化
- 第24页:未来ATI图形芯片架构预测
- 第25页:第三章:GPU通用计算发展与细节
- 第26页:多核并行计算困惑与发展
- 第27页:基于AMD CPU+GPU异构计算平台
- 第28页:着色器模型变化历程与总结
- 第29页:Shader计算能力快速发展
- 第30页:揭秘GPU高性能计算关键
- 第31页:CPU与GPU的区别和发展方向
- 第32页:如何将GPU功能单元映射为通用单元
- 第33页:分支对GPU结构体系的挑战
- 第34页:GPU与CPU将如何演绎融合与吞并
- 第35页:第四章:GPU内部计算实现细节
- 第36页:GPU主要计算单元分布和职能
- 第37页:GPU内部通用计算代码运算过程
- 第38页:认识GPU浮点计算精度
- 第39页:整数运算能力与未来融合架构
- 第40页:GPU存储体系特点与变化
- 第41页:ATI GPU吞吐特性对比与分析
- 第42页:ATI GPU OPEN CL综合性能分析
- 第43页:先进混合架构之Larrabee展望
- 第44页:概念型融合架构之Fusion APU展望
- 第45页:GPU进化架构之Fermi分析
- 第46页:第五章:ATI GPU通用计算实例
- 第47页:ATI Stream技术发展与现状
- 第48页:OPEN CL接口技术与异构运算
- 第49页:Havok引擎与CPU+GPU异构运算
- 第50页:BOINC平台充沛的ATI GPU加速项目
- 第51页:最具影响力的Folding@home项目
- 第52页:GPU架构对于其他实例的适应性
- 第53页:全文总结与未来架构展望