● GPU进化架构之Fermi分析
GT200发布时其宣传口号是所谓的Gaming Beyond和Computing Beyond,这个宣传口号第一次鲜明地体现了NVIDIA的GPU设计方向发生了明显变化。GPU Computing概念的提出,说明了GPU身份已经转变为一颗通用计算处理器。同时NVIDIA需要为开拓GPU通用计算市场而做出一些设计方面的变化。
而不久前发布的Fermi架构GTX400系列显卡,正是这一概念的深刻体现。代号GF100的Fermi设计方案在4年前确定下来并付诸行动,这时正值代号G80的Geforce 8800GTX做最后的出厂准备。G80凭借全新的MIMD(多指令流多数据流)统一着色器(又称流处理器)获得了业界的一致认同,同时被业界关注的还有G80的通用计算性能。
NVIDIA的Tony Tamasi先生(NVIDIA高级副总裁,产品与技术总监)表示:“以前的G80架构是非常出色的图形处器。但Fermi则是一款图形处理同样出色的并行处理器。”
这句话揭示了Fermi的与众不同,它已经不再面向图形领域设计了,因为更广阔的通用计算市场在等待它。Fermi将为通用计算市场带来前所未有的变革,图形性能和游戏被提及已经越来越少。
从NVIDIA处理器架构的发展来看,Tamasi先生的话意思很清楚。回顾历史我们可以发现NVIDIA最近几年间,大规模改进图形处理架构设计的是GeForce 6000(NV40)系列,之后就是GeForce 8000(G80)和GeForce GTX 200(GT200),最后就是Fermi。
“CUDA Cores”是Fermi最基础的运算单元,将它的历史向上追溯首先是G80时代的统一着色单元(Unified Shader Model),我们在G80和GT200时代将它统称为流处理器(Stream Processor),再向上追溯可知,这个单元将Vertex Shader(顶点着色器)和Pixel Shader(像素着色器)合并而成。
理论上说“CUDA Cores”只是起了一个好听的名字,让人们更看重GPU通用计算的作用,实际上我们在图形领域还是将它视为普通的流处理器。但这背后透露出NVIDIA公司的另一种计划——面向并行计算领域设计一颗芯片,并使其具备图形运算能力,这颗芯片由众多的“CUDA Cores”组成,运算速度主要由“CUDA Cores”的数量和频率决定。
在没有了解Fermi的核心构成之前,很多人“CUDA Cores”概念嗤之以鼻,认为这是NVIDIA公司的营销策略,就像HD5870所拥有的1600个流处理器一样,实际上是320个SIMD单元。两家公司确实打了不少口水仗,无数玩家也跟着它们提出的概念升级了自己的显卡。不过这次Fermi改变名称和设计方向,是有备而来的。
Fermi架构视频解析
NVIDIA这次敢提出图形性能和通用计算并重,说明GPU设计的重点和难点都在通用计算方面而非图形。因为一颗已经演化了十年的GPU肯定能做好自己的老本行图形计算,但是要做通用计算,需要更强大的线程管理能力,更强大的仲裁机制,丰富的共享cache和寄存器资源以及充足的发射端……如果做不好这些东西,GPU永远都是PC中的配角,永远都是一颗流处理器。这些表面上看这些部件是极占晶体管的东西,更可怕的是设计这些部件需要太多科研成本和时间。
Impress Watch网站知名IT评论人後藤弘茂称NVIDIA全新Fermi架构,是以处理器为目标进行设计的。因为你在Fermi身上可以看到以前GPU上从来没有的东西,包括更多的指令双发射、统一的L2全局缓存、64KB的可配置式L1或者Shared Memory、大量的原子操作单元等等。
- 第1页:全文导读与内容简介
- 第2页:前言:通过GPU见证行业变革
- 第3页:第一章:GPU工作原理与并行计算
- 第4页:21世纪视觉需求与GPU变化
- 第5页:从山峰渲染了解GPU图形流水线
- 第6页:CPU与GPU的设计方向决定运算能力
- 第7页:GPU并行编程为何加速发展
- 第8页:GPU并行计算已成未来趋势
- 第9页:初识高性能并行计算
- 第10页:高性能并行计算发展历程
- 第11页:高性能并行计算单元分类
- 第12页:初识基于GPU系统的云计算
- 第13页:第二章:GPU结构与ATI产品发展
- 第14页:统一着色器架构释放GPU运算能力
- 第15页:传统GPU发展与着色器管线
- 第16页:传统SIMD结构流处理器指令细节
- 第17页:MIMD结构流处理器指令细节
- 第18页:R600时代对SIMD架构补充与优化
- 第19页:两种结构流处理器优劣对比
- 第20页:R300以来的芯片架构及其影响
- 第21页:ATI第一代统一渲染架构Xenos
- 第22页:统一渲染GPU R600临危受命
- 第23页:AMD对GPU架构的不断改进和优化
- 第24页:未来ATI图形芯片架构预测
- 第25页:第三章:GPU通用计算发展与细节
- 第26页:多核并行计算困惑与发展
- 第27页:基于AMD CPU+GPU异构计算平台
- 第28页:着色器模型变化历程与总结
- 第29页:Shader计算能力快速发展
- 第30页:揭秘GPU高性能计算关键
- 第31页:CPU与GPU的区别和发展方向
- 第32页:如何将GPU功能单元映射为通用单元
- 第33页:分支对GPU结构体系的挑战
- 第34页:GPU与CPU将如何演绎融合与吞并
- 第35页:第四章:GPU内部计算实现细节
- 第36页:GPU主要计算单元分布和职能
- 第37页:GPU内部通用计算代码运算过程
- 第38页:认识GPU浮点计算精度
- 第39页:整数运算能力与未来融合架构
- 第40页:GPU存储体系特点与变化
- 第41页:ATI GPU吞吐特性对比与分析
- 第42页:ATI GPU OPEN CL综合性能分析
- 第43页:先进混合架构之Larrabee展望
- 第44页:概念型融合架构之Fusion APU展望
- 第45页:GPU进化架构之Fermi分析
- 第46页:第五章:ATI GPU通用计算实例
- 第47页:ATI Stream技术发展与现状
- 第48页:OPEN CL接口技术与异构运算
- 第49页:Havok引擎与CPU+GPU异构运算
- 第50页:BOINC平台充沛的ATI GPU加速项目
- 第51页:最具影响力的Folding@home项目
- 第52页:GPU架构对于其他实例的适应性
- 第53页:全文总结与未来架构展望