● 高性能并行计算单元分类
受到工艺、材料导致的功耗和发热等物理限制,处理器的频率不会在短时间内有飞跃式的提高,因此采用各种并行方式来提高运算能力已经成为业界共识。在现代的CPU中我们看到设计者广泛使用了超标量、超流水线、超长指令字,SIMD、超线程、分支预测等手段挖掘程序内的指令集并行,并且主流的CPU也有多个处理核心。而GPU与生俱来就是一种“众核”并行处理器,在处理单元的数量上还要远远超过CPU。
实际上我们之前所讲到的并行是一个非常笼统的概念,并行根据层次不同可以分为几种方式,我们可以将各个层级的并行在这里简单分析:
最为微观的是单核指令级并行(ILP),它可以让单个处理器的执行单元同时处理多条指令:向上一个层级是多核并行,它的实现方式是在一个芯片上放置多个物理核心,实现线程级别并行(TLP);再向上则是多处理器并行(Mutil-Processor),它的实现方法是在一块主板上安装多个处理器,以实现线程和进程级别并行;最后可以借助网络实现大规模集群或分布式并行(Cluster and Distributed Parallel),这种环境中每个节点就是一台计算机,可以实现更大规模的并行计算。
Flynn(1966年)分类法是根据系统的指令流和数据流对计算机系统进行分类的一种方法。Flynn分类法通过鉴定数据流和指令流来区分不同类型的计算机系统。其中以下几种就是Flyuu分类法得出的计算机结构:
SISD单指令流单数据流 (Single Instruction stream Single Data stream)
SIMD单指令流多数据流 (Single Instruction stream Multiple Data stream)
MISD 多指令流单数据流(Multiple Instruction stream Single Data stream)
MIMD多指令流多数据流 (Multiple Instruction stream Multiple Data stream)
Flyuu分类法得出的计算机结构
SISD:传统的单处理机系统。由程序生成的一个单指令流,在任意时刻处理单独的数据项。
SIMD:如:阵列处理机系统(Processor Arrays)。由一个控制器负责从存储器中取出指令并将这些指令发送给各个处理器,每个处理器同步执行相同的指令,但操作不同的数据。
MISD:相当于在指令一级并行,而在被操作的数据级串行的情况,实际上这种模型是不能实现的。
MIMD:当今绝大多数并行计算机都属于这一类。每个处理器拥有一个单独的程序,每个程序为每一个处理器生成一个指令流,每条指令对不同的数据进行操作。
Flynn分类法实际上并不能对所有计算机进行分类,如流水线向量处理机就难于按Flynn分类法简单地归为上述四类之一。并行计算机系统除少量专用的SIMD系统外,绝大部分为MIMD系统。
- 第1页:全文导读与内容简介
- 第2页:前言:通过GPU见证行业变革
- 第3页:第一章:GPU工作原理与并行计算
- 第4页:21世纪视觉需求与GPU变化
- 第5页:从山峰渲染了解GPU图形流水线
- 第6页:CPU与GPU的设计方向决定运算能力
- 第7页:GPU并行编程为何加速发展
- 第8页:GPU并行计算已成未来趋势
- 第9页:初识高性能并行计算
- 第10页:高性能并行计算发展历程
- 第11页:高性能并行计算单元分类
- 第12页:初识基于GPU系统的云计算
- 第13页:第二章:GPU结构与ATI产品发展
- 第14页:统一着色器架构释放GPU运算能力
- 第15页:传统GPU发展与着色器管线
- 第16页:传统SIMD结构流处理器指令细节
- 第17页:MIMD结构流处理器指令细节
- 第18页:R600时代对SIMD架构补充与优化
- 第19页:两种结构流处理器优劣对比
- 第20页:R300以来的芯片架构及其影响
- 第21页:ATI第一代统一渲染架构Xenos
- 第22页:统一渲染GPU R600临危受命
- 第23页:AMD对GPU架构的不断改进和优化
- 第24页:未来ATI图形芯片架构预测
- 第25页:第三章:GPU通用计算发展与细节
- 第26页:多核并行计算困惑与发展
- 第27页:基于AMD CPU+GPU异构计算平台
- 第28页:着色器模型变化历程与总结
- 第29页:Shader计算能力快速发展
- 第30页:揭秘GPU高性能计算关键
- 第31页:CPU与GPU的区别和发展方向
- 第32页:如何将GPU功能单元映射为通用单元
- 第33页:分支对GPU结构体系的挑战
- 第34页:GPU与CPU将如何演绎融合与吞并
- 第35页:第四章:GPU内部计算实现细节
- 第36页:GPU主要计算单元分布和职能
- 第37页:GPU内部通用计算代码运算过程
- 第38页:认识GPU浮点计算精度
- 第39页:整数运算能力与未来融合架构
- 第40页:GPU存储体系特点与变化
- 第41页:ATI GPU吞吐特性对比与分析
- 第42页:ATI GPU OPEN CL综合性能分析
- 第43页:先进混合架构之Larrabee展望
- 第44页:概念型融合架构之Fusion APU展望
- 第45页:GPU进化架构之Fermi分析
- 第46页:第五章:ATI GPU通用计算实例
- 第47页:ATI Stream技术发展与现状
- 第48页:OPEN CL接口技术与异构运算
- 第49页:Havok引擎与CPU+GPU异构运算
- 第50页:BOINC平台充沛的ATI GPU加速项目
- 第51页:最具影响力的Folding@home项目
- 第52页:GPU架构对于其他实例的适应性
- 第53页:全文总结与未来架构展望