● 初识高性能并行计算
并行计算是指同时对多个任务或多条指令、或对多个数据项进行处理。完成此项处理的计算机系统称为并行计算机系统,它是将多个处理器(可以几个、几十个、几千个、几万个等)通过网络连接以一定的方式有序地组织起来(一定的连接方式涉及网络的互联拓扑、通信协议等,而有序的组织则涉及操作系统、中间件软件等)。
简单认识并行计算编程
并行计算的主要目的:一是为了提供比传统计算机快的计算速度;二是解决传统计算机无法解决的问题。同时科学与工程计算对并行计算的需求是十分广泛的,但所有的应用可概括为三个方面:
1、计算密集型(Compute-Intensive)
这一类型的应用问题主要集中在大型科学工程计算与数值模拟(气象预报、地球物理勘探等)。
2、数据密集型 (Data-Intensive)
Internet的发展,为我们提供了大量的数据资源,但有效地利用这些资源,需要进行大量地处理,且对计算机的要求也相当高,这些应用包括数字图书馆、数据仓库、数据挖掘、计算可视化。
3、网络密集型 (Network-Intensive)
通过网络进行远距离信息交互,来完成用传统方法不同的一些应用问题。如协同工作、遥控与远程医疗诊断等。
GPU所擅长应对的并行计算问题,正是我们之前提到的计算密集型(Compute-Intensive)问题。因为GPU内部大量充斥着ALU运算单元阵列,这种单元应对并行度高运算密度大的问题比CPU获取的加速比要高很多倍。
通过上图我们可以较为容易地理解串行运算和并行运算之间的关系。传统的串行编写软件具备以下几个特点:要运行在一个单一的具有单一中央处理器(CPU)的计算机上;一个问题分解成一系列离散的指令;指令必须一个接着一个执行;只有一条指令可以在任何时刻执行。
而并行计算则改进了很多重要细节:要使用多个处理器运行;一个问题可以分解成可同时解决的离散指令;每个部分进一步细分为一系列指示;每个部分的问题可以同时在不同处理器上执行。
- 第1页:全文导读与内容简介
- 第2页:前言:通过GPU见证行业变革
- 第3页:第一章:GPU工作原理与并行计算
- 第4页:21世纪视觉需求与GPU变化
- 第5页:从山峰渲染了解GPU图形流水线
- 第6页:CPU与GPU的设计方向决定运算能力
- 第7页:GPU并行编程为何加速发展
- 第8页:GPU并行计算已成未来趋势
- 第9页:初识高性能并行计算
- 第10页:高性能并行计算发展历程
- 第11页:高性能并行计算单元分类
- 第12页:初识基于GPU系统的云计算
- 第13页:第二章:GPU结构与ATI产品发展
- 第14页:统一着色器架构释放GPU运算能力
- 第15页:传统GPU发展与着色器管线
- 第16页:传统SIMD结构流处理器指令细节
- 第17页:MIMD结构流处理器指令细节
- 第18页:R600时代对SIMD架构补充与优化
- 第19页:两种结构流处理器优劣对比
- 第20页:R300以来的芯片架构及其影响
- 第21页:ATI第一代统一渲染架构Xenos
- 第22页:统一渲染GPU R600临危受命
- 第23页:AMD对GPU架构的不断改进和优化
- 第24页:未来ATI图形芯片架构预测
- 第25页:第三章:GPU通用计算发展与细节
- 第26页:多核并行计算困惑与发展
- 第27页:基于AMD CPU+GPU异构计算平台
- 第28页:着色器模型变化历程与总结
- 第29页:Shader计算能力快速发展
- 第30页:揭秘GPU高性能计算关键
- 第31页:CPU与GPU的区别和发展方向
- 第32页:如何将GPU功能单元映射为通用单元
- 第33页:分支对GPU结构体系的挑战
- 第34页:GPU与CPU将如何演绎融合与吞并
- 第35页:第四章:GPU内部计算实现细节
- 第36页:GPU主要计算单元分布和职能
- 第37页:GPU内部通用计算代码运算过程
- 第38页:认识GPU浮点计算精度
- 第39页:整数运算能力与未来融合架构
- 第40页:GPU存储体系特点与变化
- 第41页:ATI GPU吞吐特性对比与分析
- 第42页:ATI GPU OPEN CL综合性能分析
- 第43页:先进混合架构之Larrabee展望
- 第44页:概念型融合架构之Fusion APU展望
- 第45页:GPU进化架构之Fermi分析
- 第46页:第五章:ATI GPU通用计算实例
- 第47页:ATI Stream技术发展与现状
- 第48页:OPEN CL接口技术与异构运算
- 第49页:Havok引擎与CPU+GPU异构运算
- 第50页:BOINC平台充沛的ATI GPU加速项目
- 第51页:最具影响力的Folding@home项目
- 第52页:GPU架构对于其他实例的适应性
- 第53页:全文总结与未来架构展望