● R600时代对SIMD架构补充与优化
R600的实现方式则与G80有很大的不同,它仍然采用SIMD架构。在R600的核心里,共设计了4组共64个流处理器,但每个处理器中拥有1个5D ALU,其实更加准确地说,应该是5个1D ALU。因为每个流处理器中的ALU可以任意以1+1+1+1+1或1+4或2+3等方式搭配(以往的GPU往往只能是1D+3D或2D+2D),co-issue模式的应用更为灵活。
R600到R800统一渲染流处理器架构
ATI将这些ALU称作streaming processing unit,因而,ATI宣称R600拥有320个SPU。我们考虑R600的每个流处理器,它每个周期只能执行一条指令,但是流处理器中却拥有5个1D ALU。ATI为了提高ALU利用率,采用了VLIW体系(Very Large Instruction Word)设计。将多个短指令合并成为一组长的指令交给流处理器去执行。例如,R600可以5条1D指令合并为一组5DVLIW指令。
对于下述指令:
ADD R0.xyz , R0,R1 //3D
ADD R4.x , R4,R5 //1D
ADD R2.x , R2,R3 //1D
R600也可以将其集成为一条VLIW指令在一个周期完成。
综上:R600的架构可以用64X5D的方式来描述。
G80将操作彻底标量化,内置128个1D标量SP,每个SP中有一个1D ALU,每周期处理一个1D操作,对于4D矢量操作,则将其拆分为4个1D标量操作。R600仍采用SIMD架构,拥有64个SP,每个SP中有5个1D ALU,因而通常声称R600有320个PSU,每个SP只能处理一条指令,ATI采用VLIW体系将短指令集成为长的VLIW指令来提高资源利用率,例如5条1D标量指令可以被集成为一条VLIW指令送入SP中在一个周期完成。
- 第1页:全文导读与内容简介
- 第2页:前言:通过GPU见证行业变革
- 第3页:第一章:GPU工作原理与并行计算
- 第4页:21世纪视觉需求与GPU变化
- 第5页:从山峰渲染了解GPU图形流水线
- 第6页:CPU与GPU的设计方向决定运算能力
- 第7页:GPU并行编程为何加速发展
- 第8页:GPU并行计算已成未来趋势
- 第9页:初识高性能并行计算
- 第10页:高性能并行计算发展历程
- 第11页:高性能并行计算单元分类
- 第12页:初识基于GPU系统的云计算
- 第13页:第二章:GPU结构与ATI产品发展
- 第14页:统一着色器架构释放GPU运算能力
- 第15页:传统GPU发展与着色器管线
- 第16页:传统SIMD结构流处理器指令细节
- 第17页:MIMD结构流处理器指令细节
- 第18页:R600时代对SIMD架构补充与优化
- 第19页:两种结构流处理器优劣对比
- 第20页:R300以来的芯片架构及其影响
- 第21页:ATI第一代统一渲染架构Xenos
- 第22页:统一渲染GPU R600临危受命
- 第23页:AMD对GPU架构的不断改进和优化
- 第24页:未来ATI图形芯片架构预测
- 第25页:第三章:GPU通用计算发展与细节
- 第26页:多核并行计算困惑与发展
- 第27页:基于AMD CPU+GPU异构计算平台
- 第28页:着色器模型变化历程与总结
- 第29页:Shader计算能力快速发展
- 第30页:揭秘GPU高性能计算关键
- 第31页:CPU与GPU的区别和发展方向
- 第32页:如何将GPU功能单元映射为通用单元
- 第33页:分支对GPU结构体系的挑战
- 第34页:GPU与CPU将如何演绎融合与吞并
- 第35页:第四章:GPU内部计算实现细节
- 第36页:GPU主要计算单元分布和职能
- 第37页:GPU内部通用计算代码运算过程
- 第38页:认识GPU浮点计算精度
- 第39页:整数运算能力与未来融合架构
- 第40页:GPU存储体系特点与变化
- 第41页:ATI GPU吞吐特性对比与分析
- 第42页:ATI GPU OPEN CL综合性能分析
- 第43页:先进混合架构之Larrabee展望
- 第44页:概念型融合架构之Fusion APU展望
- 第45页:GPU进化架构之Fermi分析
- 第46页:第五章:ATI GPU通用计算实例
- 第47页:ATI Stream技术发展与现状
- 第48页:OPEN CL接口技术与异构运算
- 第49页:Havok引擎与CPU+GPU异构运算
- 第50页:BOINC平台充沛的ATI GPU加速项目
- 第51页:最具影响力的Folding@home项目
- 第52页:GPU架构对于其他实例的适应性
- 第53页:全文总结与未来架构展望