● 着色器模型变化历程与总结
在图形渲染中,GPU中的可编程计算单元被称为着色器(Shader),着色器的性能由DirectX中规定的Shader Model来区分。GPU中最主要的可编程单元式顶点着色器和像素着色器。
为了实现更细腻逼真的画质,GPU的体系架构从最早的固定单元流水线到可编程流水线,到DirectX 8初步具备可编程性,再到DirectX 10时代的以通用的可编程计算单元为主、图形固定单元为辅的形式,最新的DirectX 11更是明确提出通用计算API Direct Compute概念,鼓励开发人员和用户更好地将GPU作为并行处理器使用。在这一过程中,着色器的可编程性也随着架构的发展不断提高,下表给出的是每代模型的大概特点。
表:Shader Model版本演化与特点
Shader Model |
GPU代表 |
显卡时代 |
特点 |
|
1999年第一代NV Geforce256 |
DirectX 7 1999~2001 |
GPU可以处理顶点的矩阵变换和进行光照计算(T&L),操作固定,功能单一,不具备可编程性 |
SM 1.0 |
2001年第二代NV Geforce3 |
DirectX 8 |
将图形硬件流水线作为流处理器来解释,顶点部分出现可编程性,像素部分可编程性有限(访问纹理的方式和格式受限,不支持浮点) |
SM 2.0 |
2003 年 ATI R300 和第三代NV Geforce FX |
DirectX 9.0b |
顶点和像素可编程性更通用化,像素部分支持FP16/24/32浮点,可包含上千条指令,处理纹理更加灵活:可用索引进行查找,也不再限制[0,1]范围,从而可用作任意数组(这一点对通用计算很重要) |
SM 3.0 |
2004年 第四代NV Geforce 6 和 ATI X1000 |
DirectX 9.0c |
顶点程序可以访问纹理VTF,支持动态分支操作,像素程序开始支持分支操作(包括循环、if/else等),支持函数调用,64位浮点纹理滤波和融合,多个绘制目标 |
SM 4.0 |
2007年 第五代NV G80和ATI R600 |
DirectX 10 2007~2009 |
统一渲染架构,支持IEEE754浮点标准,引入Geometry Shader(可批量进行几何处理),指令数从1K提升至64K,寄存器从32个增加到4096个,纹理规模从16+4个提升到128个,材质Texture格式变为硬件支持的RGBE格式,最高纹理分辨率从2048*2048提升至8192*8192 |
SM 5.0 |
2009年 ATI RV870 和2010年NV GF100 |
DirectX 11 2009~ |
明确提出通用计算API Direct Compute概念和Open CL分庭抗衡,以更小的性能衰减支持IEEE754的64位双精度浮点标准,硬件Tessellation单元,更好地利用多线程资源加速多个GPU |
传统的分离架构中,两种着色器的比例往往是固定的。在GPU核心设计完成时,各种着色器的数量便确定下来,比如著名的“黄金比例”——顶点着色器与像素着色器的数量比例为1:3。但不同的游戏对顶点资源和像素资源的计算能力要求是不同的。如果场景中有大量的小三角形,则顶点着色器必须满负荷工作,而像素着色器则会被闲置;如果场景中有少量的大三角形,又会发生相反的情况。因此,固定比例的设计无法完全发挥GPU中所有计算单元的性能。
顶点着色单元(Vertex Shader,VS)和像素着色单元(Pixel Shader,PS)两种着色器的架构既有相同之处,又有一些不同。两者处理的都是四元组数据(顶点着色器处理用于表示坐标的w、x、y、z,但像素着色器处理用于表示颜色的a、r、g、b),顶点渲染需要比较高的计算精度;而像素渲染则可以使用较低的精度,从而可以增加在单位面积上的计算单元数量。在Shader Model 4.0之前,两种着色器的精度都在不断提高,但同期顶点着色器的精度要高于像素着色器。
Shader Model 4.0统一了两种着色器,所以顶顶点和像素着色器的规格要求完全相同,都支持32位浮点数。这是GPU发展的一个分水岭;过去只能处理顶点和只能处理像素的专门处理单元被统一之后,更加适应通用计算的需求。
DirectX 11提出的Shader Model 5.0版本继续强化了通用计算的地位,微软提出的全新API——Direct Compute将把GPU通用计算推向新的巅峰。同时Shader Model 5.0是完全针对流处理器而设定的,所有类型的着色器,如:像素、顶点、几何、计算、Hull和Domaim(位于Tessellator前后)都将从新指令集中获益。
GPU执行FFT性能将在未来迅速提升
如图,快速傅里叶变换(Fast Fourier Transform,FFT)有广泛的应用,如数字信号处理、计算大整数乘法、求解偏微分方程等等。SIGGRAPH2008峰会认为未来随着Compute Shader和新硬件、新算法的加入,GPU执行FFT操作的性能将得到快速提升。
如果使用DirectX 11中的Computer Shader技术,API将能借助GPU充裕的浮点计算能力进行加速计算,则能轻易完成大量的FFT(傅里叶变换)。在图形渲染中,这项技术的运用极大地提高了波浪生成速度,而且画面质量也更好。
以往受限于浮点运算性能,目前CPU进行FFT变换只能局限在非常小的区域内,比如64x64,高端CPU最多能达到128x128,而GTX 280则能实现每帧512x512的傅里叶变换,所用时间不过2ms,效能非常高。
- 第1页:全文导读与内容简介
- 第2页:前言:通过GPU见证行业变革
- 第3页:第一章:GPU工作原理与并行计算
- 第4页:21世纪视觉需求与GPU变化
- 第5页:从山峰渲染了解GPU图形流水线
- 第6页:CPU与GPU的设计方向决定运算能力
- 第7页:GPU并行编程为何加速发展
- 第8页:GPU并行计算已成未来趋势
- 第9页:初识高性能并行计算
- 第10页:高性能并行计算发展历程
- 第11页:高性能并行计算单元分类
- 第12页:初识基于GPU系统的云计算
- 第13页:第二章:GPU结构与ATI产品发展
- 第14页:统一着色器架构释放GPU运算能力
- 第15页:传统GPU发展与着色器管线
- 第16页:传统SIMD结构流处理器指令细节
- 第17页:MIMD结构流处理器指令细节
- 第18页:R600时代对SIMD架构补充与优化
- 第19页:两种结构流处理器优劣对比
- 第20页:R300以来的芯片架构及其影响
- 第21页:ATI第一代统一渲染架构Xenos
- 第22页:统一渲染GPU R600临危受命
- 第23页:AMD对GPU架构的不断改进和优化
- 第24页:未来ATI图形芯片架构预测
- 第25页:第三章:GPU通用计算发展与细节
- 第26页:多核并行计算困惑与发展
- 第27页:基于AMD CPU+GPU异构计算平台
- 第28页:着色器模型变化历程与总结
- 第29页:Shader计算能力快速发展
- 第30页:揭秘GPU高性能计算关键
- 第31页:CPU与GPU的区别和发展方向
- 第32页:如何将GPU功能单元映射为通用单元
- 第33页:分支对GPU结构体系的挑战
- 第34页:GPU与CPU将如何演绎融合与吞并
- 第35页:第四章:GPU内部计算实现细节
- 第36页:GPU主要计算单元分布和职能
- 第37页:GPU内部通用计算代码运算过程
- 第38页:认识GPU浮点计算精度
- 第39页:整数运算能力与未来融合架构
- 第40页:GPU存储体系特点与变化
- 第41页:ATI GPU吞吐特性对比与分析
- 第42页:ATI GPU OPEN CL综合性能分析
- 第43页:先进混合架构之Larrabee展望
- 第44页:概念型融合架构之Fusion APU展望
- 第45页:GPU进化架构之Fermi分析
- 第46页:第五章:ATI GPU通用计算实例
- 第47页:ATI Stream技术发展与现状
- 第48页:OPEN CL接口技术与异构运算
- 第49页:Havok引擎与CPU+GPU异构运算
- 第50页:BOINC平台充沛的ATI GPU加速项目
- 第51页:最具影响力的Folding@home项目
- 第52页:GPU架构对于其他实例的适应性
- 第53页:全文总结与未来架构展望