在这个环节,我们使用了常用的GPU-Z软件和EVEREST系统信息检测软件来测试每代核心顶级显卡的基本信息,这样可以帮助各位用户更好的回顾和分析核心架构规模和这代产品的基本概况。
最后一款登场的是在架构方面做出第一次大幅度改进的RV870架构代表之作——Radeon HD5870显卡。它代表了AMD在40nm工艺方面最成熟的微架构设计和AMD所有产品中最强的单卡单芯性能,特别是在性能功耗比方面表现优异。
Radeon HD5870显卡GPU-Z信息
在GPU-Z信息测试中,软件识别出了这款产品的基本情况,我们可以看到它使用了集成1600个流处理器的R800核心(Cypress),40nm工艺、21.54亿个晶体管。本次测试的产品在频率方面默认做出了提升,但是为了测试结果更有对比性,我们还是将它还原为最初的公版频率。
显存方面,RV870核心使用了256位显存控制器以减小芯片面积,降低芯片是生产成本和功耗,但是借助频率极高的DDR5显存最终显存带宽达到150.0GB/s。同时借助于对DirectX 11的支持,这款显卡能够对DirectComputer计算接口提供支持,这为以后市场更大的GPU通用计算提供了基础。
在传感器页面,我们看到了这款显卡的传感器能够准确识别显卡的工作状态。丰富的传感器数量能够准确描述这款显卡的运行状态,这是高端显卡所必须的特性。复杂的监控项目甚至在一屏无法显示。
上图是EVEREST检测结果,我们选择“图形处理器”,EVEREST侦测到的结果基本与GPU-Z软件一致。同时我们发现AMD在RV770核心中加入的Powerplay功耗控制技术在这代核心中还是有较好的继承。通过我们前文的分析可知,R800核心的功耗控制能力更为优秀。
- 第1页:AMD统一渲染GPU架构 历程回顾与评测
- 第2页:R520和R580对NVIDIA的影响
- 第3页:R600与G80的不均衡对抗
- 第4页:RV670开始改进 绝境求生
- 第5页:GT200体现NVIDIA变化方向
- 第6页:RV770的策略与成功
- 第7页:AMD的赌注与HD4850的改变
- 第8页:RV870的设计思路和诞生背景
- 第9页:RV870芯片概况与策略
- 第10页:Fermi架构的困惑
- 第11页:R600芯片设计之初遇到的问题
- 第12页:RV770和RV870架构追求不断改进
- 第13页:Fermi未来的性能亮点与优势
- 第14页:回顾统一渲染架构,探寻SIMD极限
- 第15页:基本信息分析——Radeon HD2900 XT
- 第16页:基本信息分析——Radeon HD3870
- 第17页:基本信息分析——Radeon HD4890
- 第18页:基本信息分析——Radeon HD5870
- 第19页:性能测试的硬件、软件平台状况
- 第20页:DX9理论性能测试:3DMark 06
- 第21页:DX10理论性能测试:3Dmark Vantage
- 第22页:GPGPU着色器性能-单精度Shader
- 第23页:GPGPU着色器性能-双精度Shader
- 第24页:3Dmark Vantage 贴图填充率测试
- 第25页:3Dmark Vantage 视差闭塞映射
- 第26页:3Dmark Vantage GPU粒子模拟
- 第27页:3Dmark 06 Shader Particles 3.0
- 第28页:Furmark Open GL 性能测试
- 第29页:Lightsmark 光照渲染测试
- 第30页:DirectX 10 SDK Cube Map GS
- 第31页:DirectX 10 SDK N Body Gravity
- 第32页:测试总结与回顾